skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kamal, Mehdi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Abstract A novel high-fan-in differential superconductor neuron structure designed for ultra-high-performance spiking neural network (SNN) accelerators is presented. Utilizing a high-fan-in neuron structure allows us to design SNN accelerators with more synaptic connections, enhancing the overall network capabilities. The proposed neuron design is based on superconductor electronics fabric, incorporating multiple superconducting loops, each with two Josephson Junctions. This arrangement enables each input data branch to have positive and negative inductive coupling, supporting excitatory and inhibitory synaptic data. Compatibility with synaptic devices and thresholding operation is achieved using a single flux quantum pulse-based logic style. The neuron design, along with ternary synaptic connections, forms the foundation for a superconductor-based SNN inference. To demonstrate the capabilities of our design, we train the SNN using snnTorch, augmenting the PyTorch framework. After pruning, the demonstrated SNN inference achieves an impressive 96.1% accuracy on MNIST images. Notably, the network exhibits a remarkable throughput of 8.92 GHz while consuming only 1.5 nJ per inference, including the energy consumption associated with cooling to 4 K. These results underscore the potential of superconductor electronics in developing high-performance and ultra-energy-efficient neural network accelerator architectures. 
    more » « less
  3. In this article, we present a low-energy inference method for convolutional neural networks in image classification applications. The lower energy consumption is achieved by using a highly pruned (lower-energy) network if the resulting network can provide a correct output. More specifically, the proposed inference method makes use of two pruned neural networks (NNs), namely mildly and aggressively pruned networks, which are both designed offline. In the system, a third NN makes use of the input data for the online selection of the appropriate pruned network. The third network, for its feature extraction, employs the same convolutional layers as those of the aggressively pruned NN, thereby reducing the overhead of the online management. There is some accuracy loss induced by the proposed method where, for a given level of accuracy, the energy gain of the proposed method is considerably larger than the case of employing any one pruning level. The proposed method is independent of both the pruning method and the network architecture. The efficacy of the proposed inference method is assessed on Eyeriss hardware accelerator platform for some of the state-of-the-art NN architectures. Our studies show that this method may provide, on average, 70% energy reduction compared to the original NN at the cost of about 3% accuracy loss on the CIFAR-10 dataset. 
    more » « less